
Grand Challenge: Using Streaming Data and Apache Flink to
Infer Energy Consumption

Michael Hendrick∗
mhendric@bu.edu
Boston University

Boston, Massachusetts

Manuja DeSilva
mdesilva@bu.edu
Boston University

Boston, Massachusetts

ABSTRACT
This paper entails the technical details of an approach to the chal-
lenge presented by the DEBS 2020 committee, regarding Non-
Intrusive Load Monitoring (NILM) and its relevance in the area of
data streaming. Our project highlights how the open source project
Apache Flink can provide an efficient solution for processing large
data-sets. Furthermore, we implement a version of DBSCAN, a
data clustering algorithm, and we present an effective approach
for handling out of order events in a data stream. We observe that
our approach strikes a balance between optimization, usability, and
accuracy with room for future work. We propose a complete solu-
tion that is capable of detecting appliance power events and energy
consumption by using a stream of voltage and current data.

CCS CONCEPTS
• Computing Methodologies → Modeling and Simulation; •
Applied Computing→ Physical Science and Engineering; •Math-
ematics of Computing→ Probability and Statistics; •Computer
Systems Organizations → Dependable and Fault Tolerant Sys-
tems and Networks.

KEYWORDS
Data Stream Processing, DBSCAN, Event Modelling, Event Based
Systems, Real Time Processing

ACM Reference Format:
Michael Hendrick andManuja DeSilva. 2020. GrandChallenge: Using Stream-
ing Data and Apache Flink to Infer Energy Consumption . In Montreal ’20:
ACM International Conference On Distributed AND Event-Based Systems,
July 13–17, 2020, Montreal, Canada. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Non-Intrusive Load Monitoring (NILM) [2] is the process of observ-
ing changes in voltages and currents in a building and using this
information to identify what appliances are present in the building
and how much energy those devices could be using. The 2020 DEBS

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Montreal ’20, July 13–17, 2020, Montreal, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

Table 1: Query 1 Comparison on Input of 500000 Events

Test Solution Baseline Accuracy

Runtime 9243ms 68928ms 100%
Latency 54ms 129ms 100%

Challenge is focused on taking a stream of voltages and currents
and identifying possible events using statistical modelling, as out-
lined in the reference paper. The provided dataset gives information
regarding voltage (𝑉 = 𝐼 ·𝑅) and current (𝐼 = 𝑉

𝑅
) values, as well as

an unique 𝑖𝑑 for each event. Our approach involves using Apache
Flink [3], an open source platform that is designed from the ground
up to offer low latency and high throughput in regards to large
data streams. Table 1 highlights the significantly lower latency our
solution has while only having a marginal increase in runtime. To
achieve this, we take advantage of Flink’s operators, discussed fur-
ther in Section 3, alongside a DBSCAN detection algorithm [4] to
compute results in a timely fashion. Figure 1 highlights an overview
of our approach, and more detail is provided in Section 3.

2 BACKGROUND

Figure 1: A broad look at our approach to the challenge

2.1 Apache Flink
Apache Flink plays a critical part in the architecture of our solution.
At its heart, it is a lightweight platform designed to process batches
of streaming data from various inputs, from files on disk to real-time
sockets. Flink can also be adapted to take input from other external
sources as well; our solution utilizes an Apache HTTP client to
feed records to Flink. Many elements that one needs to consider

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Montreal ’20, July 13–17, 2020, Montreal, Canada DeSilva and Hendrick, et al.

when working with event streams, such as data distribution, fault
tolerance, and managing time, all work out of the box with Flink.
In particular, its windowing API proves to be very resourceful, as
it easily chunks incoming events in a manner that allows Flink to
optimally process each batch of events, thus causing the program’s
latency to shrink considerably. This configuration required little
intervention on our part aside from defining the type of window
and its size, permitting us to focus more on the core component of
our program: the clustering algorithm.

2.2 DBSCAN
Density Based Spatial Clustering of Applications with Noise (DB-
SCAN) is a popular data clustering algorithm that when provided
two arguments, minimum amount of points and an epsilon value, re-
turns clusters, each of which contains sets of our input data deemed
to be similar to each other; these are also referred to as neighbor-
hoods. Samples that do not belong to any cluster are assigned to
a noise cluster. We draw several metrics from each of these clus-
ters, including its maximum member, its minimum member, and its
temporal locality.

2.3 NILM
DBSCAN, as referred above, can be used as part of a Non-Intrusive
Load Monitoring (NILM) solution. As detailed in the referenced pa-
per, Sequential Clustering-Based Event Detection For Non-Intrusive
Load Monitoring, the authors use DBSCAN to identify clusters
within a growing window of features, even when the beginning
and end of the window are not consistent or easily identifiable
from the raw data itself. At a high level, in addition to the DB-
SCAN parameters, our adaptation of the NILM solution takes as
input a temporal locality epsilon value and a loss threshold lambda
value, and utilizes these parameters to find clusters that meet the
event model constraints and ultimately pinpoint a non-interleaving
cluster pair with minimum satisfactory loss.

3 SOLUTION ARCHITECTURE

Figure 2: An in-depth look in Apache Flink’s involvement
in our solution

We entail below the steps and components our solution takes
to form and report results based on the events inputted into the
stream.

3.1 Tuple Elements
Flink features its own implementation of a Tuple object out of
the box, which comes optimized for Flink workflows and other
operators. It is this Tuple element we convert our raw data into,
and we use this structure throughout our body of work.

3.2 Flink Operators
Apache Flink is composed of many operators that transform data
streams into new data streams, and combining operators allows
developers to create intricate computing logic. We highlight the
operators we use below, and in Figure 2.

3.2.1 Sliding Window. Sliding windows are Flink operators that
group elements inside a window of fixed length. We use this in our
solution to batch together elements a thousand at a time to detect
possible events. This helps streamline our workflow greatly, and
allows us to separate event groups easily.

3.2.2 Process Function. Process functions in Flink do the necessary
low level computational work to generate meaningful results. We
use a process function inside our sliding window to calculate reac-
tive and active power, and to generate the tuples that our predict
logic is expecting. In addition, we use a separate process function
to call our predict method and emit the solution for each window
to the correct output.

3.3 Predicting Events
3.3.1 Definitions. Allow us to provide context on terms that appear
in the reference paper below.

• temporal locality: A ratio that explains how a given clus-
ter is spreading over a domain.

• Model 1: An event with no noise clusters, two substantial
clusters, and the clusters do not over leave.

• Model 2: An event with no noise clusters, two substantial
clusters, and the clusters do not over leave.

• Model 3: An event with possible noise clusters, at least two
clusters with a high temporal locality, and the clusters do
not over leave.

3.3.2 Upstream operators. We begin by continuously retrieving
record tuples from the source via sequential HTTP GET requests,
and convert the raw input tuples into compact and efficient Flink
Tuple objects that are optimized for quick serialization and de-
serialization operations throughout the life-cycle of our data stream.
During the conversion, we also generate watermarks [1], a progress
tracking feature of Flink that provides the stream a sense of time,
permitting us to create window-based events.Window-based events
allow us to easily define window lengths of an arbitrary sample
size and then create features for each of these windows. For our
experiment, we create a sliding window of 1000 events. For every
1000 events, we generate a tuple with the current window id, the
calculated active power and the calculated reactive power features.
Each of these tuples is then forwarded to our Event Detector class,
which continuously processes a growing window of active and
reactive features, running the Forward Pass workflow, and, if an
event is detected, the Backwards Pass workflow.

Grand Challenge: Using Streaming Data and Apache Flink to Infer Energy Consumption Montreal ’20, July 13–17, 2020, Montreal, Canada

3.3.3 Forward Pass. Our implementation of event prediction is one
that closely models the approach described in the reference paper.
All prediction attempts begin by receiving a list of 𝑁 consecutive
events that are provided by the upstream operators described above.
We then run our DBSCAN algorithm on this set of events, and return
a set of clusters, each containing some unique set of events. Next, for
each iteration of predicted clusters, in addition to verifying that we
have at least two non-noise clusters, we verify that we have at least
two clusters with a locality of (𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 > 1−temporal locality).
Then, we look for a set of cluster pairs which share non-interleaving
points, if such cluster pairs exist. It also returns an interval of noise
events located between the two clusters. Using this data, the cluster
pair and its event interval is checked against the acceptable model
loss value. If it is validated, then an event is detected. If an event
is not detected, then the forward pass begins again with 𝑁 + 1
consecutive events. As a caveat, to avoid our growing window of
events from growing arbitrarily large, we clear the window every
100 windows if an event has not been detected in the last 100
windows.

3.3.4 Backwards Pass. If themodel loss was satisfactory, we declare
that an event has occurred, and we attempt to determine exactly
where the event transpired. This is done by removing the first
sample from the list repeatedly while the loss is still satisfactory.
Once we reach a stage where the loss is too high, or an event is no
longer detected, we reinsert the removed sample and declare this
range the location of the event.

3.4 Handling Out of Order and Late Arrivals
For the second part of the challenge, we were required to devise a
solution that could account for some events arriving late, or possibly
not even at all. Originally, we approached this by waiting 200000
time units to see if the events would eventually arrive, and if so
calculate per normal otherwise progress. As one might expect, this
led to very high accuracy despite the late arrivals, but however
also led to higher latency, in part due to the waiting, and in part to
how Flink handles the batching of data. In our final solution, we
decide not to wait for those tuples, and instead we fill in missing
data with our own data. The data that we populate the incomplete
windows is based on the average of what has been seen up until
things went missing, multiplied with some noise to create pseudo
random data points. When testing, we found that while this was not
as accurate as waiting for incomplete windows, it was still detecting
most events correctly, with a profound increase of timeliness. This
appeared to us as a reasonable trade off, and is one we moved
forward with.

4 DOCKER INTEGRATION
When building our solution into the requested Docker container
format, we first approached the build by following the official Flink
container guidelines 1, which posted that we run the job manager
and task manager on separate containers, and our application in
an additional container. However, due to the restrictions on the
docker-compose format, we packed the job manager, task man-
agers, and application into one container. When the container is

1https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/docker.html

instantiated it triggers the Flink cluster, which encompasses both
the job manager and task managers, to start. After determining
the grader infrastructure is ready, our application submits its “job”
to the cluster and runs our prediction algorithm on the incoming
tuples.

5 CHALLENGES FACED
In particular, we found our shortcomings in two specific areas. The
first of which was implementing NILM as described in the reference
paper. Whenever implementing an idea presented in another work,
great care must be taken in ensuring that the created versionmimics
the original to a high precision level. Unfortunately, there was a
minor part of our version that was off from the original, that led
to slight but noticeable errors causing a dip in the accuracy of our
implementation, even when events were in order, most often when
we scaled to larger datasets. This decrease in accuracy is comprised
of detected events not listed in the ground truth. So, our algorithm
and its underlying model may have been over-fitted in some aspects.
In addition, Apache Flink comes with a lot of great, useful features
out of the box that helped immensely when devising our solution.
At the same time, we were constrained to the limits of the system,
in particular the batching of data. This batching process we believe
led to an increased latency, and is an attribute of our solution that
we found we could only improve up to a certain limit.

6 CONCLUSION
Our solution obtained results with a high degree of accuracy and
low latency in comparison to the baseline solution. By stitching
together existing software and testing ideas with our own unique
additions, we have put together a platform that can easily be built
upon and improved. While our final results and model may have
over-predicted events in some cases, we maintain faith that this
software can be used as a building block for future work in this
space.

7 FUTUREWORK
While we are pleased with the timeliness of our solution, we would
want to spend more time ensuring the accuracy of our solution,
particularly at large scales. As our solution stands, we trade mis-
information for lower latency, and we believe that there exists
approaches where the trade off does not need to be as stark as it
currently is in our implemented solution. We would also want to
explore a scenario of multi-threading and avoiding cases of repeat
work. Most likely, our current DBSCAN is a bottleneck in the over-
all performance of the system, and performing some optimizations
here would lead to a system wide increase in performance.

8 ACKNOWLEDGEMENTS
Wewould like to thank Professor Vasiliki Kalavri (vkalavri@bu.edu)
for introducing us to the world of data streams and processing. We
would have never achieved what we did without her guidance, and
we are very appreciative for the lessons she taught us along the
way.

https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/docker.html

Montreal ’20, July 13–17, 2020, Montreal, Canada DeSilva and Hendrick, et al.

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflow model: a practical approach to balanc-
ing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. (2015).

[2] Karim Said Barsim and Bin Yang. 2016. Sequential clustering-based event detection
for non-intrusive load monitoring. Computer Science & Information Technology 6

(2016), 77–85.
[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi, and

Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 36,
4 (2015).

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

	Abstract
	1 Introduction
	2 Background
	2.1 Apache Flink
	2.2 DBSCAN
	2.3 NILM

	3 Solution Architecture
	3.1 Tuple Elements
	3.2 Flink Operators
	3.3 Predicting Events
	3.4 Handling Out of Order and Late Arrivals

	4 Docker Integration
	5 Challenges Faced
	6 Conclusion
	7 Future Work
	8 Acknowledgements
	References

